Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 7.844
1.
J Colloid Interface Sci ; 666: 529-539, 2024 Jul 15.
Article En | MEDLINE | ID: mdl-38613975

Elastic carbon aerogels have promising applications in the field of wearable sensors. Herein, a new strategy for preparing carbon aerogels with excellent compressive strength and strain, shape recovery, and fatigue resistance was proposed based on the structure design and carbonization optimization of nanocellulose-based precursor aerogels. By the combination of directional freezing and zinc ion cross-linking, bacterial cellulose (BC)/alginate (SA) composite aerogels with high elasticity and compressive strength were first achieved. The existance of zinc ions also significantly improved the carbon retention rate and inhibited structural shrinkage, thus making the carbon aerogels retain ultra-high elasticity and fatigue resistance after compression. Moreover, the carbon aerogel possessed excellent piezoresistive pressure sensing performance with a wide detection range of 0-7.8 kPa, high sensitivity of 11.04 kpa-1, low detection limit (2 % strain), fast response (112 ms), and good durability (over 1,000 cycles). Based on these excellent properties, the carbon aerogel pressure sensors were further successfully used for human motion monitoring, from joint motion to and speech recognition.


Alginates , Carbon , Cellulose , Elasticity , Gels , Wearable Electronic Devices , Carbon/chemistry , Gels/chemistry , Humans , Cellulose/chemistry , Alginates/chemistry , Anisotropy , Particle Size , Surface Properties , Zinc/chemistry
2.
Soft Matter ; 20(16): 3483-3498, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38587658

A breast-cancer tumor develops within a stroma, a tissue where a complex extracellular matrix surrounds cells, mediating the cancer progression through biomechanical and -chemical cues. Current materials partially mimic the stromal matrix in 3D cell cultures but methods for measuring the mechanical properties of the matrix at cell-relevant-length scales and stromal-stiffness levels are lacking. Here, to address this gap, we developed a characterization approach that employs probe-based microrheometry and Bayesian modeling to quantify length-scale-dependent mechanics and mechanical heterogeneity as in the stromal matrix. We examined the interpenetrating network (IPN) composed of alginate scaffolds (for adjusting mechanics) and type-1 collagen (a stromal-matrix constituent). We analyzed viscoelasticity: absolute-shear moduli (stiffness/elasticity) and phase angles (viscous and elastic characteristics). We determined the relationship between microrheometry and rheometry information. Microrheometry reveals lower stiffness at cell-relevant scales, compared to macroscale rheometry, with dependency on the length scale (10 to 100 µm). These data show increasing IPN stiffness with crosslinking until saturation (≃15 mM of Ca2+). Furthermore, we report that IPN stiffness can be adjusted by modulating collagen concentration and interconnectivity (by polymerization temperature). The IPNs are heterogeneous structurally (in SEM) and mechanically. Interestingly, increased alginate crosslinking changes IPN heterogeneity in stiffness but not in phase angle, until the saturation. In contrast, such changes are undetectable in alginate scaffolds. Our nonlinear viscoelasticity analysis at tumor-cell-exerted strains shows that only the softer IPNs stiffen with strain, like the stromal-collagen constituent. In summary, our approach can quantify the stromal-matrix-related viscoelasticity and is likely applicable to other materials in 3D culture.


Alginates , Extracellular Matrix , Extracellular Matrix/chemistry , Extracellular Matrix/metabolism , Humans , Alginates/chemistry , Cell Culture Techniques, Three Dimensional , Viscosity , Stromal Cells/cytology , Stromal Cells/metabolism , Elasticity , Tissue Scaffolds/chemistry , Collagen Type I/chemistry , Collagen Type I/metabolism , Biomechanical Phenomena , Rheology , Models, Biological , Bayes Theorem
3.
Water Environ Res ; 96(4): e11022, 2024 Apr.
Article En | MEDLINE | ID: mdl-38655583

A microfluidic strategy of smart calcium alginate (CA) capsules is presented to immobilize Pseudomonas aeruginosa to treat oil slicks effectively. The capsule wall is embedded with poly (N-isopropyl acrylamide) sub-microspheres as thermo-responsive switches. CA capsules, with a diameter of 3.26 mm and a thin wall thickness about 12.8 µm, have satisfying monodispersity, cavity structure, and dense surface structures. The capsules possess excellent encapsulation of bacteria, which are fixed in a restricted space and become more aggregated. It overcomes the disadvantages of a long fermentation production cycle, easy loss of bacteria, and susceptibility to shear effect. The smart CA capsules immobilized with bacteria treat model wastewater containing soybean oil or diesel and display favorable fermentation ability. The capsules can effectively treat oil slicks with high concentration, and it is an economical way for processing oily wastewater. PRACTITIONER POINTS: A thermo-responsive calcium alginate capsule was prepared by microfluidic strategy. Pseudomonas aeruginosa is environmentally friendly in treating oil slicks. The capsules, immobilized bacteria, treat oil slicks effectively. This study provides an economical way for processing different oily water.


Alginates , Pseudomonas aeruginosa , Wastewater , Alginates/chemistry , Wastewater/chemistry , Cells, Immobilized/metabolism , Waste Disposal, Fluid/methods , Temperature , Capsules
4.
J Mater Sci Mater Med ; 35(1): 19, 2024 Mar 25.
Article En | MEDLINE | ID: mdl-38526655

The efficacy of stem-cell therapy depends on the ability of the transplanted cells to escape early immunological reactions and to be retained at the site of transplantation. The use of tissue engineering scaffolds or injectable biomaterials as carriers has been proposed, but they still present limitations linked to a reliable manufacturing process, surgical practice and clinical outcomes. Alginate microbeads are potential candidates for the encapsulation of mesenchymal stromal cells with the aim of providing a delivery carrier suitable for minimally-invasive and scaffold-free transplantation, tissue-adhesive properties and protection from the immune response. However, the formation of stable microbeads relies on the cross-linking of alginate with divalent calcium ions at concentrations that are toxic for the cells, making control over the beads' size and a single-cell encapsulation unreliable. The present work demonstrates the efficiency of an innovative, high throughput, and reproducible microfluidic system to produce single-cell, calcium-free alginate coatings of human mesenchymal stromal cells. Among the various conditions tested, visible light and confocal microscopy following staining of the cell nuclei by DAPI showed that the microfluidic system yielded an optimal single-cell encapsulation of 2000 cells/min in 2% w/v alginate microcapsules of reproducible morphology and an average size of 28.2 ± 3.7 µm. The adhesive properties of the alginate microcapsules, the viability of the encapsulated cells and their ability to escape the alginate microcapsule were demonstrated by the relatively rapid adherence of the beads onto tissue culture plastic and the cells' ability to gradually disrupt the microcapsule shell after 24 h and proliferate. To mimic the early inflammatory response upon transplantation, the encapsulated cells were exposed to proliferating macrophages at different cell seeding densities for up to 2 days and the protection effect of the microcapsule on the cells assessed by time-lapse microscopy showing a shielding effect for up to 48 h. This work underscores the potential of microfluidic systems to precisely encapsulate cells by good manufacturing practice standards while favouring cell retention on substrates, viability and proliferation upon transplantation.


Mesenchymal Stem Cells , Microfluidics , Humans , Cell Encapsulation , Capsules , Bone Marrow , Alginates/chemistry , Hexuronic Acids/chemistry , Cell Survival , Glucuronic Acid/chemistry
5.
IEEE Trans Nanobioscience ; 23(2): 368-377, 2024 Apr.
Article En | MEDLINE | ID: mdl-38427547

Known for its water solubility, flexibility, strong adhesion, and eco-friendly nature, polyvinyl alcohol (PVA) is widely used in various industries. In the medical field, it is used for applications such as creating bandages and orthopaedic devices. Incorporating sodium alginate (SA) into PVA membranes enhances their structural integrity, breathability, and permeability, thereby minimising the risk of cellular damage in the wound zone. Moreover, the addition of tamanu oil (C alophyllum inophyllum L.) and silver nanoparticles, both of which are known for their antibacterial properties and benefits in traditional wound healing, further enhances the membranes' wound-healing effectiveness. Following production, the membranes undergo a series of tests designed to evaluate their physical properties as well as their antioxidant and antibacterial capabilities. Subsequently, in vitro testing is conducted using human skin cells; experiments on Wistar rats are then performed. Numerous experiments have consistently demonstrated that the performance of polyvinyl alcohol/sodium alginate/tamanu oil (PVA/SA/Oil) membrane is superior to that of polyvinyl alcohol/sodium alginate/tamanu oil/silver nanoparticles (PVA/SA/Oil/Ag NP) membrane. Specifically, the polyvinyl alcohol/sodium alginate (PVA/SA) combination exhibits an impressive wound-healing rate of 98.82% after 15 days, with cells maintaining a high viability of 92% in a nourishing environment. Moreover, these membranes exhibit exceptional resistance to the oxidation of free radicals, surpassing the 70% threshold, and they possess antibacterial activity against Staphylococcus aureus subsp. aureus in vitro. Based on the obtained results, the nanofiber membranes composed of polyvinyl alcohol/ alginate/ tamanu oil, with or without silver nanoparticles, have shown potential as wound dressings in the wound care discipline.


Metal Nanoparticles , Silver , Staphylococcus , Rats , Animals , Humans , Silver/pharmacology , Silver/chemistry , Polyvinyl Alcohol , Alginates/pharmacology , Alginates/chemistry , Metal Nanoparticles/therapeutic use , Metal Nanoparticles/chemistry , Rats, Wistar , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Bandages
6.
Carbohydr Polym ; 334: 122033, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38553232

Over the years, polysaccharides such as chitosan, alginate, hyaluronic acid, k-carrageenan, xanthan gum, carboxymethyl cellulose, pectin, and starch, alone or in combination with proteins and/or synthetic polymers, have been used to engineer an extensive portfolio of hydrogels with remarkable features. The application of polysaccharide-based hydrogels has the potential to alleviate challenges related to bioavailability, solubility, stability, and targeted delivery of phytocompounds, contributing to the development of innovative and efficient drug delivery systems and functional food formulations. This review highlights the current knowledge acquired on the preparation, features and applications of polysaccharide/phytocompounds hydrogel-based hybrid systems in wound management, drug delivery, functional foods, and food industry. The structural, functional, and biological requirements of polysaccharides and phytocompounds on the overall performance of such hybrid systems, and their impact on the application domains are also discussed.


Hydrogels , Polysaccharides , Hydrogels/chemistry , Biological Availability , Polysaccharides/pharmacology , Polysaccharides/chemistry , Drug Delivery Systems , Alginates/chemistry , Carrageenan
7.
Carbohydr Polym ; 334: 122039, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38553236

Biological processes, such as bone defects healing are precisely controlled in both time and space. This spatiotemporal characteristic inspires novel therapeutic strategies. The sustained-release systems including hydrogels are commonly utilized in the treatment of bone defect; however, traditional hydrogels often release drugs at a consistent rate, lacking temporal precision. In this study, a hybrid hydrogel has been developed by using sodium alginate, sucrose acetate isobutyrate, and electrospray microspheres as the base materials, and designed with ultrasound response, and on-demand release properties. Sucrose acetate isobutyrate was added to the hybrid hydrogel to prevent burst release. The network structure of the hybrid hydrogel is formed by the interconnection of Ca2+ with the carboxyl groups of sodium alginate. Notably, when the hybrid hydrogel is exposed to ultrasound, the ionic bond can be broken to promote drug release; when ultrasound is turned off, the release returned to a low-release state. This hybrid hydrogel reveals not only injectability, degradability, and good mechanical properties but also shows multiple responses to ultrasound. And it has good biocompatibility and promotes osteogenesis efficiency in vivo. Thus, this hybrid hydrogel provides a promising therapeutic strategy for the treatment of bone defects.


Alginates , Drug Delivery Systems , Microspheres , Alginates/chemistry , Bone Regeneration , Osteogenesis , Hydrogels/chemistry
8.
Int J Pharm ; 654: 123968, 2024 Apr 10.
Article En | MEDLINE | ID: mdl-38460771

Wound healing constitutes a formidable challenge within the healthcare system, attributable to infection risks and protracted recovery periods. The pressing need for innovative wound healing methods has spurred the urgency to develop novel approaches. This study sought to advance wound healing by introducing a novel approach employing a composite sponge dressing. The composite sponge dressing, derived from LFL-ZnO (synthesized through the green methodology utilizing Lactobacillus plantarum ZDY2013 fermentation liquid), polyvinyl alcohol (PVA), and sodium alginate (SA) via a freeze-thaw cycle and freeze-drying molding process, demonstrated notable properties. The findings elucidate the commendable swelling, moisturizing, and mechanical attributes of the SA/LFL-ZnO/PVA composite sponge dressing, characterized by a porous structure. Remarkably, the dressing incorporating LFL-ZnO exhibited substantial inhibition against both methicillin-resistant Staphylococcus aureus (MRSA) and Staphylococcus aureus (S. aureus). Hemolysis and cytotoxicity tests corroborated the excellent biocompatibility of the sponge dressing. In vivo evaluation of the therapeutic efficacy of the 1 mg/mL LFL-ZnO composite dressing on scald wounds and S. aureus-infected wounds revealed its capacity to accelerate wound healing and exert pronounced antibacterial effects. Consequently, the composite sponge dressings synthesized in this study hold significant potential for application in wound treatment.


Methicillin-Resistant Staphylococcus aureus , Zinc Oxide , Polyvinyl Alcohol/chemistry , Zinc Oxide/chemistry , Staphylococcus aureus , Alginates/chemistry , Bandages/microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Hydrogels/chemistry , Wound Healing
9.
Int J Biol Macromol ; 264(Pt 2): 130666, 2024 Apr.
Article En | MEDLINE | ID: mdl-38453119

Three-dimensional (3D) printing allows precise manufacturing of bone scaffolds for patient-specific applications and is one of the most recently developed and implemented technologies. In this study, bilayer and multimaterial alginate dialdehyde-gelatin (ADA-GEL) scaffolds incorporating polydopamine (PDA)/SiO2-CaO nanoparticle complexes were 3D printed using a pneumatic extrusion-based 3D printing technology and further modified on the surface with bovine serum albumin (BSA) for application in bone regeneration. The morphology, chemistry, and in vitro bioactivity of PDA/SiO2-CaO nanoparticle complexes were characterized (n = 3) and compared with those of mesoporous SiO2-CaO nanoparticles. Successful deposition of the PDA layer on the surface of the SiO2-CaO nanoparticles allowed better dispersion in a liquid medium and showed enhanced bioactivity. Rheological studies (n = 3) of ADA-GEL inks consisting of PDA/SiO2-CaO nanoparticle complexes showed results that may indicate better injectability and printability behavior compared to ADA-GEL inks incorporating unmodified nanoparticles. Microscopic observations of 3D printed scaffolds revealed that PDA/SiO2-CaO nanoparticle complexes introduced additional topography onto the surface of 3D printed scaffolds. Additionally, the modified scaffolds were mechanically stable and elastic, closely mimicking the properties of natural bone. Furthermore, protein-coated bilayer scaffolds displayed controllable absorption and biodegradation, enhanced bioactivity, MC3T3-E1 cell adhesion, proliferation, and higher alkaline phosphatase (ALP) activity (n = 3) compared to unmodified scaffolds. Consequently, the present results confirm that ADA-GEL scaffolds incorporating PDA/SiO2-CaO nanoparticle complexes modified with BSA offer a promising approach for bone regeneration applications.


Indoles , Nanoparticles , Polymers , Tissue Scaffolds , Humans , Tissue Scaffolds/chemistry , Alginates/chemistry , Gelatin/chemistry , Serum Albumin, Bovine , Silicon Dioxide , Bone Regeneration , Printing, Three-Dimensional , Tissue Engineering/methods , Osteogenesis
10.
Int J Biol Macromol ; 264(Pt 2): 130653, 2024 Apr.
Article En | MEDLINE | ID: mdl-38458272

Novel hydrogel beads based on nanocomposite with outstanding antibacterial and swelling capabilities have been successfully produced as an efficient drug carrier for potential drug delivery systems in wound healing applications. The beads were characterized by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and EDX-Mapping analysis. Then, using tetracycline hydrochloride (TCH) as a model drug system, they were studied in vitro for their potential efficiency as pH and temperature dependent sustained drug delivery carriers. Moreover, they were assessed in terms of porosity, swelling degree, encapsulation efficiency, and in vitro release kinetics. Beads released drugs at their highest levels under alkaline circumstances (pH = 8) and at a temperature of 39 °C, with a cumulative TCH release of 96.2 % at 36 h and in accordance with the Weibull kinetics model (R2 = 0.98). Additionally, the disc diffusion experiment demonstrated the strong antibacterial activity of the synthesized beads and offered a feasible and cost-effective wound dressing material for treating infected wounds.


Nanoparticles , Tetracycline , Tetracycline/pharmacology , Hydrogels/chemistry , Alginates/chemistry , Spectroscopy, Fourier Transform Infrared , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Drug Delivery Systems , Drug Carriers/chemistry , Wound Healing , Drug Liberation
11.
Int J Biol Macromol ; 264(Pt 2): 130786, 2024 Apr.
Article En | MEDLINE | ID: mdl-38548497

This study comprises the isolation of quercetin from the bhimkol banana (Musa balbisiana) blossom, encapsulation, and its characterizations. An isolated quercetin rich fraction was obtained from HPLC followed by column chromatography and subsequently encapsulated with chitosan-alginate polyelectrolyte complex at optimum encapsulation conditions obtained by ant colony optimization. Quercetin fraction and encapsulated quercetin were characterized for their physicochemical properties (by HPLC, FTIR, NMR, XRD, Dynamic Light Scattering, and release study). The yield and purity of isolated quercetin rich fractions were 2.35 ± 0.08 µg/ml and 83.12 ± 0.31 %, respectively. After the optimization of encapsulation, quercetin 0.2 %, sodium alginate 4 %, chitosan 0.5 %, and agitation at 300 rpm were found to be the optimal conditions resulting in higher encapsulation efficiency (EE, 84.54 %). EE was significantly improved by a slight increase in sodium alginate, and agitation. Encapsulated quercetin revealed good pH resistance by releasing 68.27 mg QE/g quercetin in simulated gastric fluid at 60 min. Microbeads of encapsulated quercetin showed the structural bond stretching of encapsulating materials and quercetin in FTIR spectra (stretching at 1511 cm-1, 1380 cm-1, and 1241 cm-1 are attributed to the stretching vibration of CO in aromatic rings, and bending vibration of OH bond in phenols). An average particle size of 2.71 µm exhibited the microgel behavior of microbeads (by XRD). The present study on the underutilized variety of banana blossoms has diverse applications in the food and pharmaceutical industries that will productively exhibit effective drug delivery properties.


Chitosan , Musa , Quercetin/chemistry , Alginates/chemistry , Chitosan/chemistry , Antioxidants/chemistry
12.
Int J Biol Macromol ; 265(Pt 1): 130949, 2024 Apr.
Article En | MEDLINE | ID: mdl-38508545

This study addresses the growing interest in bio-based active food packaging by infusing Lepidium sativum (Garden cress) seeds extract (GRCE) into sodium alginate (SALG) films at varying concentrations (1, 3, and 5 %). The GRCE extract revealed six phenolic compounds, with gallic and chlorogenic acids being prominent, showcasing substantial total phenolic content (TPC) of 139.36 µg GAE/mg and total flavonoid content (TFC) of 26.46 µg RE/mg. The integration into SALG films significantly increased TPC, reaching 30.73 mg GAE/g in the film with 5 % GRCE. This enhancement extended to DPPH and ABTS activities, with notable rises to 66.47 and 70.12 %, respectively. Physical properties, including tensile strength, thickness, solubility, and moisture content, were positively affected. A reduction in water vapor permeability (WVP) was reported in the film enriched with 5 % GRCE (1.389 × 10-10 g H2O/m s p.a.). FT-IR analysis revealed bands indicating GRCE's physical interaction with the SALG matrix, with thermal stability of the films decreasing upon GRCE integration. SALG/GRCE5 effectively lowered the peroxide value (PV) of sunflower oil after four weeks at 50 °C compared to the control, with direct film-oil contact enhancing this reduction. Similar trends were observed in the K232 and K270 values.


Alginates , Lepidium sativum , Alginates/chemistry , Spectroscopy, Fourier Transform Infrared , Food Packaging/methods , Phenols , Plant Extracts/chemistry , Oxidative Stress
13.
Int J Biol Macromol ; 264(Pt 1): 130554, 2024 Apr.
Article En | MEDLINE | ID: mdl-38431001

Antibiotics have been considered as a group of emerging contaminants for their stable chemical structure, significant pseudo-persistence, and biological toxicity. Tetracycline (TC), as one of the typical antibiotics frequently detected in environmental media, can cause the dissemination and accumulation of antibiotic resistance gene (ARG), ultimately threatening human health and environmental safety. Herein, a novel iron­calcium di-crosslinked graphene oxide/alginate (GO/SA-Fe3+-Ca2+) aerogel was facilely synthesized for TC uptake. It was found that the introduction of GO nanosheets and Fe3+ sites into composite enormously enhanced TC removal. Specifically, TC can be stably and efficiently eliminated over the wide pH range of 5-8. The fitted maximum qe with Liu isotherm model at 308 K reached 1664.05 mg/g, surpassing almost all reported sorbents. The pseudo-second-order kinetic model with chemical sorption characteristics better fitted TC adsorption process, which was endothermic and spontaneous in nature. Multifarious adsorptive sites of GO/SA-Fe3+-Ca2+ synergically participated in TC uptake through multi-mechanisms (e.g., π-π EDA, cation-π bonding, H-bonding, Fe3+-coordination, and electrostatic attraction, etc.). The as-prepared composite showed satisfactory TC removal in several runs of adsorption-desorption operations, high salinity, and model aquaculture wastewater. Moreover, the packed-column could continuously run for >200 h until adsorption saturation was achieved with a dynamic adsorption capacity of 216.69 mg/g, manifesting its scale-up engineering applications. All above merits make as-constructed composite an alternative sorbent for eliminating TC from complex wastewater.


Graphite , Wastewater , Water Pollutants, Chemical , Humans , Calcium , Microspheres , Alginates/chemistry , Water Pollutants, Chemical/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Tetracycline/chemistry , Adsorption , Kinetics , Hydrogen-Ion Concentration
14.
Int J Biol Macromol ; 264(Pt 1): 130483, 2024 Apr.
Article En | MEDLINE | ID: mdl-38430999

To investigate the efficacy of sodium alginate-konjac glucomannan (SA-KGM) films with anthocyanins (LRA) and tea polyphenols (TP) in meat, beef and grass carp were selected as representative meat products for preservation and freshness monitoring experiments at 4 °C. Concurrently, storage experiments of the films were conducted in this controlled environment. The results of the storage experiment showed that the films delayed meat spoilage by 2-4 days, nearly doubling the preservation time compared to the blank control. Additionally, the film exhibited significant capability to monitor the spoilage process of beef and grass carp. It was revealed by curve fitting analysis that there was a significant correlation between the color change of the film and the spoilage index of the meat. Throughout the storage experiment with the film, it was observed that moisture significantly influenced the microstructure and bonding situation of the films, thereby impacting their mechanical and barrier properties. However, the films were still able to maintain satisfactory physicochemical properties in general. The above findings were crucial in guiding the promotion of the film within the food preservation industry.


Alginates , Lycium , Mannans , Animals , Cattle , Alginates/chemistry , Anthocyanins/chemistry , Polyphenols/chemistry , Tea/chemistry , Food Packaging
15.
Int J Biol Macromol ; 264(Pt 1): 130564, 2024 Apr.
Article En | MEDLINE | ID: mdl-38431021

This paper presents the formation of a self-healing hydrogel prepared by carboxyethyl modification of chitosan and crosslinking with oxidized sodium alginate. Concurrently, the incorporation of Ca2+ facilitated the formation of "calcium bridges" through intricate coordination with carboxyl moieties, bolstering the attributes of the hydrogel. Various characterization methods, including scanning electron microscopy, texture analysis, and rheological measurements, demonstrated that the introduction of carboxyethyl groups resulted in a more compact hydrogel network structure and improved the hardness and elasticity. The addition of Ca2+ helped to further enhance the mechanical performance of the hydrogel and increase its thermal stability. Then, the adsorption capacity was also investigated, showing adsorption capacities of 46.17 mg/g methylene blue and 46.44 mg/g congo red for carboxyethyl chitosan/oxidized sodium alginate hydrogel, a four-fold increase for congo red versus chitosan/oxidized sodium alginate hydrogel. In addition, the adsorption behavior of CEC/OSA/2%Ca2+ hydrogel can be well described by pseudo-second-order kinetic model and Langmuir adsorption isothermal model. Compared to traditional hydrogels, CEC/OSA/2%Ca2+ hydrogel shows superior mechanical strength, enhanced thermal stability, and improved adsorption capacity, which can effectively adsorb not only methylene blue but also congo red. These advancements demonstrate our hydrogel's innovative properties.


Chitosan , Water Pollutants, Chemical , Chitosan/chemistry , Alginates/chemistry , Hydrogels/chemistry , Congo Red , Methylene Blue/chemistry , Adsorption , Kinetics , Water Pollutants, Chemical/chemistry , Hydrogen-Ion Concentration
16.
Int J Biol Macromol ; 264(Pt 1): 130457, 2024 Apr.
Article En | MEDLINE | ID: mdl-38432265

A mucoadhesive polyelectrolyte complex (PEC) nanoparticles were developed for ocular moxifloxacin (Mox) delivery in Bacterial Keratitis (BK). Moxifloxacin-loaded G/CG-Alg NPs were prepared by an amalgamation of cationic polymers (gelatin (G)/cationized gelatin (CG)), and anionic polymer (sodium alginate (Alg)) along with Mox respectively. Mox@CG-Alg NPs were characterized for physicochemical parameters such as particle size (DLS technique), morphology (SEM analysis), DSC, XRD, encapsulation efficiency, drug loading, mucoadhesive study (by texture analyzer), mucin turbidity, and viscosity assessment. The NPs uptake and toxicity of the formulation were analyzed in the Human Corneal Epithelial (HCE) cell line and an ocular irritation study was performed on the HET-CAM. The results indicated that the CG-Alg NPs, with optimal size (217.2 ± 4 nm) and polydispersity (0.22 ± 0.05), have shown high cellular uptake in monolayer and spheroids of HCE. The drug-loaded formulation displayed mucoadhesiveness, trans-corneal permeation, and sustained the release of the Mox. The anti-bacterial efficacy studied on planktonic bacteria/biofilms of P. aeruginosa and S. aureus (in vitro) indicated that the Mox@CG-Alg NPs displayed low MIC, higher zone of bacterial growth inhibition, and cell death compared to free Mox. A significant reduction of bacterial load was observed in the BK-induced mouse model.


Dieldrin/analogs & derivatives , Eye Infections, Bacterial , Keratitis , Nanoparticles , Mice , Animals , Humans , Moxifloxacin/pharmacology , Gelatin/chemistry , Polyelectrolytes , Alginates/chemistry , Staphylococcus aureus , Ophthalmic Solutions , Nanoparticles/chemistry , Keratitis/drug therapy
17.
Colloids Surf B Biointerfaces ; 236: 113804, 2024 Apr.
Article En | MEDLINE | ID: mdl-38428209

In this study, a double network (DN) hydrogel was synthesized using poly(ethylene glycol) diacrylate (PEGDA) and sodium alginate (SA), incorporating copper-doped mesoporous silica nanospheres (Cu-MSNs) and zinc oxide nanoparticles (ZnO NPs). The blending of PEGDA and SA (PS) facilitates the double network and improves the less porous microstructure of pure PEGDA hydrogel. Furthermore, the incorporation of ZnO NPs and Cu-MSNs into the hydrogel network (PS@ZnO/Cu-MSNs) improved the mechanical properties of the hydrogel (Compressive strength = ⁓153 kPa and Young's modulus = ⁓ 1.66 kPa) when compared to PS hydrogel alone (Compressive strength = ⁓ 103 kPa and Young's modulus = ⁓ 0.95 kPa). In addition, the PS@ZnO/Cu-MSNs composite hydrogel showed antibacterial activities against Staphylococcus aureus and Escherichia coli. Importantly, the PS@ZnO/Cu-MSNs hydrogel demonstrated excellent biocompatibility, enhanced MC3T3-E1 cell adhesion, proliferation, and significant early-stage osteoblastic differentiation, as evidenced by increased alkaline phosphatase (ALP), and improved calcium mineralization, as evidenced by increased alizarin red staining (ARS) activities. These findings point to the possible use of the PS@ZnO/Cu-MSNs composite hydrogel in bone tissue regeneration.


Nanoparticles , Nanospheres , Zinc Oxide , Nanospheres/chemistry , Copper/pharmacology , Zinc Oxide/pharmacology , Osteogenesis , Tissue Engineering , Hydrogels/pharmacology , Hydrogels/chemistry , Silicon Dioxide/chemistry , Alginates/pharmacology , Alginates/chemistry , Nanoparticles/chemistry , Polyethylene Glycols/chemistry
18.
ACS Appl Bio Mater ; 7(3): 1449-1468, 2024 Mar 18.
Article En | MEDLINE | ID: mdl-38442406

This study introduces a tyrosol-loaded niosome integrated into a chitosan-alginate scaffold (Nio-Tyro@CS-AL), employing advanced electrospinning and 3D printing techniques for wound healing applications. The niosomes, measuring 185.40 ± 6.40 nm with a polydispersity index of 0.168 ± 0.012, encapsulated tyrosol with an efficiency of 77.54 ± 1.25%. The scaffold's microsized porous structure (600-900 µm) enhances water absorption, promoting cell adhesion, migration, and proliferation. Mechanical property assessments revealed the scaffold's enhanced resilience, with niosomes increasing the compressive strength, modulus, and strain to failure, indicative of its suitability for wound healing. Controlled tyrosol release was demonstrated in vitro, essential for therapeutic efficacy. The scaffold exhibited significant antibacterial activity against Pseudomonas aeruginosa and Staphylococcus aureus, with substantial biofilm inhibition and downregulation of bacterial genes (ndvb and icab). A wound healing assay highlighted a notable increase in MMP-2 and MMP-9 mRNA expression and the wound closure area (69.35 ± 2.21%) in HFF cells treated with Nio-Tyro@CS-AL. In vivo studies in mice confirmed the scaffold's biocompatibility, showing no significant inflammatory response, hypertrophic scarring, or foreign body reaction. Histological evaluations revealed increased fibroblast and macrophage activity, enhanced re-epithelialization, and angiogenesis in wounds treated with Nio-Tyro@CS-AL, indicating effective tissue integration and repair. Overall, the Nio-Tyro@CS-AL scaffold presents a significant advancement in wound-healing materials, combining antibacterial properties with enhanced tissue regeneration, and holds promising potential for clinical applications in wound management.


Chitosan , Phenylethyl Alcohol/analogs & derivatives , Mice , Animals , Chitosan/pharmacology , Chitosan/chemistry , Liposomes , Alginates/pharmacology , Alginates/chemistry , Wound Healing , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/chemistry , Printing, Three-Dimensional
19.
Sci Total Environ ; 927: 172058, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38552978

With the rapid development of urbanization, the discharge of industrial wastewater has led to increasingly critical water pollution issues. Additionally, heavy metals, organic dyes, microorganisms and oil pollution often coexist and have persistence and harmfulness. Developing materials that can treat these complex pollutants simultaneously has important practical significance. In this study, a calcium alginate-based aerogel membrane (PANI@CA membrane) was prepared by spraying, polymerization, Ca2+ cross-linking and freeze-drying using aniline and sodium alginate as raw materials. Oil-water emulsion can be separated by PANI@CA membrane only under gravity, and the separation efficiency was as high as 99 %. At the same time, the membrane can effectively intercept or adsorb organic dyes and heavy metal ions. The removal rates of methylene blue and Congo red were above 92 % and 63 % respectively even after ten times of cyclic filtration. The removal rate of Pb2+ was up to 95 %. In addition, PANI@CA membrane shows excellent photothermal conversion ability, and it can effectively kill Staphylococcus aureus under 808 nm laser irradiation. PANI@CA membrane has the advantages of low cost, simple preparation, good stability and high recycling ability, and has potential application prospects in wastewater treatment.


Alginates , Aniline Compounds , Anti-Bacterial Agents , Membranes, Artificial , Metals, Heavy , Water Pollutants, Chemical , Water Purification , Alginates/chemistry , Water Pollutants, Chemical/analysis , Water Purification/methods , Coloring Agents/chemistry , Waste Disposal, Fluid/methods , Wastewater/chemistry
20.
Molecules ; 29(6)2024 Mar 12.
Article En | MEDLINE | ID: mdl-38542891

There is a strong need to develop an insulin delivery system suitable for oral administration and preserving natural (α-helix) insulin conformation. In this work, we fabricated alginate-gelatin hydrogel beads for insulin encapsulation. Altering matrix composition and crosslinking agents has resulted in various surface morphologies and internal spatial organization. The structures of the insulin-loaded matrices were studied using optical and field emission electronic microscopy. We use FTIR spectroscopy to identify insulin conformation changes as affected by the hydrogel matrices. It was found that blended alginate-gelatin matrices demonstrate better encapsulation efficiency and stronger swelling resistance to a simulated gastric environment than sodium alginate beads crosslinked with the CaCl2. FTIR measurements reveal conformation changes in insulin. It is also confirmed that in the presence of gelatin, the process of insulin fibrinogenesis ceases due to intermolecular interaction with the gelatin. Performed molecular modeling shows that dipole-dipole interactions are the dominating mechanism that determines insulin behavior within the fabricated matrix.


Hydrogels , Insulin , Hydrogels/chemistry , Gelatin/chemistry , Alginates/chemistry
...